Stereochemistry of Cyclic Organophosphorus Compounds. Part $13 .{ }^{1}$ Stereoisomerism in Bis-(4-methyl-2-thioxo-1,3,2-dioxaphosphorinan-2yl) Oxide. Synthesis of Diastereoisomers and their Solution and Solid State Conformations

Marian Mikołajczyk * and Barbara Ziemnicka
Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Department of Organic Sulphur Compounds, 90-362 Łodz, Boczna 5, Poland
Janina Karolak-Wojciechowska
Institute of General Chemistry, Technical University, 90-924 Lodz, Zwirki 36, Poland Michał Wieczorek
Gesellschaft für Biotechnologische Forschung mbH, D-3300 Braunschweig-Stockheim, Mascheroder Weg 1, Federal Republic of Germany

Abstract

Bis-(4-methyl-2-thioxo-1,3,2-dioxaphosphorinan-2-yl) oxide (4) has been found to exist in six diastereoisomeric forms [cis-trans-, trans-trans-, and cis-cis-(4a) and -(4b)] differing both in configuration at the phosphorus atoms and in the relative positions of the methyl groups on $\mathrm{C}(4)$ on the two 1,3,2dioxaphosphorinan rings A and s. All diastereoisomers of (4) have been characterised by ${ }^{1} \mathrm{H}$ n.m.r., ${ }^{31} \mathrm{P}$ n.m.r., and i.r. spectroscopy. Single-crystal X-ray analysis of the trans-trans-(4a) isomer revealed that one 1,3,2-dioxaphosphorinan ring adopts a strongly flattened chair conformation with an axial methyl group on $\mathrm{C}(4)$; an X-ray analysis of the cis-cis-(4a) isomer shows it to have a conformation with both sulphur atoms and both methyl groups in equatorial positions relative to the 1,3,2-dioxaphosphorinan rings. The conformation of all diastereoisomers of (4) in solution is discussed and the stereochemistry of bis-(4-methyl-1,3,2-dioxaphosphorinan-2-yl) oxide (5) is briefly considered.

The discovery of cyclic organophosphorus systems in biologically active substances as well as their participation in a number of important biological processes stimulated extensive research concerning the synthesis and stereochemistry of heterocyclic organophosphorus compounds. Among these, 1,3,2-dioxaphosphorinan systems have attracted special attention. The stereochemical aspects of this class of compounds are exhaustively discussed by Maryanoff et al. ${ }^{2}$ in an excellent review.

Until now, however, studies on compounds containing two 1,3,2-dioxaphosphorinan units in one molecule have been rare. Recent determinations of the crystal and molecular structures of bis-(5,5-dimethyl-2-oxo-1,3,2-dioxaphosphorin-an-2-yl) oxide (1a) ${ }^{3}$ and the corresponding sulphide (1b), ${ }^{4}$ in which there are no chiral centres at phosphorus or carbon, revealed that the phosphoryl groups in both chair-like 1,3,2dioxaphosphorinan rings of (1 a and b) are equatorial whereas the bridging oxygen and sulphur atoms are axial. Thus, the configuration at phosphorus in both six-membered rings of ($1 a$ and b) is determined by the well established conformational preferences of the phosphorus substituents in these systems.

As a consequence of our previous studies on cyclic cis- and trans-thioacids (2) ${ }^{5}$ and on the stereochemistry of nucleophilic substitution at phosphorus in cyclic, diastereoisomeric thiophosphoryl halogenides (3) ${ }^{6,7}$ our attention was directed toward the bicyclic dithiopyrophosphate, bis-(4-methyl-2-thioxo-1,3,2-dioxaphosphorinan-2-yl) oxide (4).

Although dithiopyrophosphate (4) was obtained by Arbu$z^{*}{ }^{8}$ by the addition of sulphur to pyrophosphite (5), its stereochemistry was not discussed. It is noteworthy that, in contrast to the achiral compounds (1 a and b), dithiopyrophosphate (4) has four chiral centres and should exist in a number of diastereoisomeric forms. In this paper we report the syntheses of the diastereoisomers of (4) and the elucidation of their conformation by n.m.r. spectra and X-ray crystallography. A brief discussion of the stereochemistry of the bicyclic pyrophosphite (5) is also given.

Results and Discussion

In view of the fact that phosphorylation of the phosphorus monothioacid anion occurs exclusively at the oxygen atom ${ }^{9}$ we decided to prepare the diastereoisomeric forms of (4) by condensing the readily available tetramethylammonium salts of the cis- and trans-thioacids (2) ${ }^{5}$ with the cyclic chloride (3a) ${ }^{6,} \dagger$ or bromide (3b) ${ }^{6}$ having the appropriate configuration at chiral phosphorus.

However, before presenting the experimental results obtained it seems desirable to define first the number of diastereoisomers of (4). This may be conveniently done using the Cahn-Ingold-Prelog R and S notation for the absolute configuration at the chiral phosphorus and C (4) carbon atoms in (4) and basing discussion on the mode of synthesis ${ }_{\ddagger} \ddagger$ For this reason it is convenient to specify the enantiomeric forms of the starting thioacids (2) and halogenides (3) as shown in Scheme 1.

For the sake of simplicity let us assume in this preliminary discussion that both 1,3,2-dioxaphosphorinan rings in (4) adopt a chair conformation and that the methyl groups on $\mathrm{C}(4)$ are equatorially situated.

Scheme 2 shows the six possible diastereoisomers of (4) and the mode of their synthesis. Thus, in the (4a) series $c \mathrm{~A}$ (or $t \mathrm{~A}$) condenses with $c \mathrm{H}^{*}$ or $t \mathrm{H}^{*}$, whereas in series (4b) they do so with $c \mathrm{H}$ or $t \mathrm{H}$. With regard to the notation used in Scheme 2 three comments should be made. The first is that ring a comes from the acid and ring в from the halide. Secondly, the suffix is attached to cH or $t \mathrm{H}$ to indicate the inversion at phosphorus that should take place on condensation as a consequence of nucleophilic attack by the thioacid anion. ${ }^{6}$ Finally, only one enantiomer of a racemic pair is shown for each isomer depic-

[^0]
(1)
$a_{i} X=0$
b; $X=S$

(2)

(3) $a_{i} X=C l$
b; $X=B r$
$c_{i} X=F$

(4)

(5)
ted in Scheme 2 except of trans-trans-(4a) and cis-cis-(4a) which are achiral molecules. It is interesting that in the two cis-trans-isomers of (4) one thiophosphoryl group is axial and the other equatorial, whereas in each of the four more symmetrical isomers both thiophosphoryl sulphur atoms occupy either axial or equatorial positions. In conclusion, the bicyclic dithiopyrophosphate (4) which at first sight could exist in eight enantiomeric forms, in fact occurs only in six, i.e. two cis-cis, two trans-trans, and only two distinct cis-trans forms. Since the racemic thioacids (2) and halogenides (3) were used in the present study, it is obvious that the racemic or meso forms of (4) will be generated on condensation.

With the above discussion in mind we condensed the tetramethylammonium salt of the cis-thioacid (2) with trans-bromide (3b) in acetonitrile. The reaction afforded a solid dithiopyrophosphate (4), m.p. $80-84^{\circ}$. There is no doubt that, while the configuration at $\mathrm{P}(1)$ in cis-(2) remains unchanged during condensation, the configuration at $\mathrm{P}(2)$ in trans- $(3 \mathrm{~b})$ should be inverted in accord with our previous observations. ${ }^{6}$ Hence, the condensation under consideration should result in the formation of a mixture of the unsymmetrical cis-trans dithiopyrophosphates (4 a and b) in both of which $\mathrm{P}(1)$ and $\mathbf{P}(2)$ are nonequivalent. Evidence for this assignment was provided by their ${ }^{31} \mathrm{P}$ and ${ }^{1} \mathrm{H}$ n.m.r. spectra.

The ${ }^{31} P\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectrum shows a typical $A B$ system (see Figure 1) indicating the presence of two non-equivalent phosphorus nuclei $\mathrm{P}(1)$ and $\mathrm{P}(2)$ absorbing at $\delta_{\mathrm{P}} 45.7$ and 50.0 p.p.m. $\left(J_{\mathrm{P}(1)-\mathrm{P}(2)} 34.5 \mathrm{~Hz}\right)$, respectively. Moreover, each arm of the AB signal is split into a doublet due to the presence of two unsymmetrical dithiopyrophosphates (4a and b). It

cA

$c A^{*}$

$t \mathrm{~A}$

t A

$A=$ acid	$c=$ cis
$H=$ halide	$t=$ trans

$t \mathrm{H}$
$H=$ halide $\quad t=$ trans

$t H^{*}$

Scheme 1. Enantiomeric forms of starting materials and nomenclature
should be noted, however, that the difference in their ${ }^{31} \mathrm{P}$ n.m.r. chemical shifts is very small. Much better support for the view that the product obtained is indeed a mixture of cis-trans- $\left(4 \mathrm{a}\right.$ and b) was provided by the ${ }^{1} \mathrm{H}$ n.m.r. spectra. Theoretically, all four methyl groups in either cis-trans-(4a or b) are chemically nonequivalent and should show different chemical shifts in the ${ }^{1} \mathrm{H}$ n.m.r. spectrum. Taking into account that the resonance signal of the methyl protons in 1,3,2-dioxaphosphorinan rings consists of four lines due to splitting by the methine proton at $C(4)$ and phosphorus, 16 lines were expected to appear in the methyl region of the ${ }^{1} \mathrm{H}$ n.m.r. spectrum of a mixture of cis-trans-(4 a and b). This was found to be the case (see Figure 1). Interestingly, the signals for two methyl groups at $\delta 0.90$ and 0.87 are split by phosphorus with ${ }^{4} J_{\mathrm{P}-\mathrm{CH}_{3}} 2.75 \mathrm{~Hz}$ whereas the other two at $\delta 1.05$ and 1.04 couple to phosphorus with ${ }^{4} J_{\mathrm{P}-\mathrm{CH}_{3}} 0.88 \mathrm{~Hz}$. Extensive investigations ${ }^{10-13}$ of 2-oxo- or 2-thioxo-1,3,2-dioxaphosphorinan systems have shown that the protons of the equatorial methyl group on $C(4)$ couple to phosphorus more strongly when the thiophosphoryl sulphur is equatorial. Therefore, it is reasonable to assume that the coupling constants of 2.75 and 0.88 Hz correspond to coupling with $\mathrm{P}(1)$ and $\mathbf{P}(2)$ respectively, in cis-trans-(4 a and b). The i.r. spectrum measured in KBr discs of the dithiopyrophosphate cis-trans-(4a and b) obtained as shown above reveals four sharp bands at $681,695,745$, and $750 \mathrm{~cm}^{-1} 14$ in the region characteristic of the thiophosphoryl $\mathrm{P}=\mathrm{S}$ group.

Next, the tetramethylammonium salt of the trans-thioacid (2) was condensed with trans-bromide (3b). This reaction resulted in the formation of a crystalline dithiopyrophosphate (4), m.p. 45-60 ${ }^{\circ}$. Based on the results discussed above

$c A+t H_{i}^{*}$
$=$ cis-trans (4a)

$\mathrm{CA}+\mathrm{CH}_{i}{ }^{*}$
$=c i s-c i s$ (4a)

$c A+t H_{i}$
$=$ cis - trans (4b)

$c \mathrm{~A}+c \mathrm{H}_{\mathrm{i}}$
$=c i s-c i s(4 \mathrm{~b})$

Scheme 2. Diastereoisomeric forms of (4)

(\pm) - cis-(2)
(\pm) - trans - (3b)
it was obvious that the product of the reaction (2) is a mixture of two symmetrical dithiopyrophosphates, trans-trans-(4a and b). Accordingly, its ${ }^{31} P\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectrum showed two singlets of equal intensity at $\delta_{\mathrm{P}} 48.1$ and 48.3 p.p.m.

By fractional crystallisation of trans-trans-(4a and b) from benzene-cyclohexane we were able to isolate one pure isomer, m.p. $91-92.5^{\circ}, \delta_{\mathrm{P}} 48.3$ p.p.m. The methyl protons on $\mathrm{C}(4)$ of the isolated isomer appeared in the ${ }^{1} \mathrm{H}$ n.m.r. spectrum at $\delta 1.04$ and were split by phosphorus with a coupling constant ${ }^{4} J_{\mathrm{P}-\mathrm{CH}_{3}}$ of 0.80 Hz . Its i.r. (KBr) spectrum revealed four bands in the $\mathrm{P}=\mathrm{S}$ absorption region at $635,650,735$, and $740 \mathrm{~cm}^{-1}$.

Finally, the reaction between the tetramethylammonium salt of the cis-thioacid (2) and cis-chloride (3a) ${ }^{1}$ was carried out in order to obtain a mixture of the symmetrical dithiopyrophosphates cis-cis- $(4 \mathrm{a}$ and b$)$. The product of this condensation, m.p. $120-130^{\circ}$, consisted of the two expected diastereoisomers. In this case, however, they were formed in unequal amounts as evidenced by the ${ }^{31} \mathbf{P}\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectrum (Figure 1) which exhibited two singlets at $\delta_{\mathrm{P}} 46.5$ and 46.8 in the ratio $19: 81$, respectively. Since the cis-chloride (3a) used for the reaction was only 80% diastereoisomerically pure the ${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}$ n.m.r. spectrum also revealed the presence of the cis-trans- $(4 \mathrm{a}+\mathrm{b})$ mixture.

Two crystallisations of the mixture of cis-cis-(4a and b)
from benzene-cyclohexane afforded the major diastereoisomer in the pure state, m.p. $159-162^{\circ}, \delta_{\mathrm{p}} 46.8$ p.p.m. Its ${ }^{1} \mathrm{H}$ n.m.r. spectrum showed a typical signal for the 4 -methyl protons at $\delta 0.87\left({ }^{4} J_{\mathrm{P}-\mathrm{CH}_{3}} 1.13 \mathrm{~Hz}\right)$. In the i.r. spectrum (KBr) two bands at 705 and $755 \mathrm{~cm}^{-1}$ were found in the region for the thiophosphoryl group.

It is generally accepted ${ }^{10,13}$ that for 1,3,2-dioxaphosphorinan rings having methyl substituents on $C(4)$ or $C(6)$ a coupling constant value ${ }^{4} J_{\mathrm{P}-\mathrm{CH}_{3}}$ of $2-3 \mathrm{~Hz}$ indicates an equatorial methyl group, while a lower value $(0.5-1.5 \mathrm{~Hz})$ indicates an axial methyl or a mixture of conformational isomers with axial and equatorial methyl groups. In this regard the low values of ${ }^{4} J_{\mathrm{P}-\mathrm{CH}_{3}}$ found for the majority of diastereoisomeric dithiopyrophosphates (4) are rather surprising. The data suggest that in addition to the conformations shown in Scheme 1 the diastereoisomers of (4) may also adopt conformations in solution in which the methyl groups on $\mathrm{C}(4)$ are axial. Alternatively, the decrease in the values of ${ }^{4} J_{\mathrm{p}-\mathrm{CH}_{3}}$ observed for diastereoisomeric (4) may be a consequence of unfavourable interactions between two bulky 1,3,2-dioxaphosphorinan rings leading to substantial deformation and deviation of one or both from an ideal chair conformation.

To gain more detailed insight into the structure and conformation of diastereoisomeric (4), X-ray analyses of the pure

Figure 1．${ }^{31} \mathrm{P}$ and ${ }^{1} \mathrm{H}$ n．m．r．spectra of diastereoisomeric dithiopyrophosphates（4）： $\mathrm{a},{ }^{31} \mathrm{P}$ n．m．r．signal for cis－trans－（ $4 \mathrm{a}+\mathrm{b}$ ）； $\mathrm{b},{ }^{31} \mathrm{P}$ n．m．r．signal for trans－trans－$(4 a+b)$ ；$c,{ }^{31} \mathrm{P}$ n．m．r．signal for cis－cis－（ $4 \mathrm{a}+\mathrm{b}$ ）；d，expanded resonance signal in ${ }^{1} \mathrm{H}$ n．m．r．spectrum of the methyl protons in cis－trans－$(4 \mathrm{a}+\mathrm{b})$

（ \pm ）－cis－（2）
（土）－cis－（3a）$(80 \%$ d．p．）

（さ）－trans－（2）
（さ）－trans－（3b）
diastereoisomers trans－trans－（4），m．p．91－92．5 ${ }^{\circ}$ ，and cis－cis－ （4），m．p．159－162 ${ }^{\circ}$ ，were carried out．Determination of their structures revealed from the relative positions of the two methyl groups in the six－membered rings that both compounds were in fact in the（4a）series of Scheme 1.

X－Ray Crystal Structures of Dithiopyrophosphates trans－ trans＇－（4a）and cis－cis－（4a）．－Three－dimensional views of single molecules of trans－trans－（4），m．p． $91-92.5^{\circ}$ ，and cis－cis－ （4），m．p． $159-162^{\circ}$ ，and the atom numbering are shown in

Figures 2 and 3，respectively．Figures 4 and 5 show stereo－ views of the packing arrangements in their unit cells．The atomic fractional co－ordinates for non－hydrogen atoms in both compounds are listed in Table 1 and for hydrogen in Table 2．Tables 3 and 4 contain bond distances and angles．

Figure 2 reveals two most important structural features of the molecule of trans－trans－（4）．The first is that it belongs to the（4a）series．Secondly，the substitution patterns of the dioxaphosphorinan rings A and \boldsymbol{b} are different．Whereas the thiophosphoryl sulphur atom and the methyl group on $\mathrm{C}(4)$ in

Figure 2. There-dimensional view of one of the enantiomeric molecules of trans-trans'-(4a) with atom numbering

Figure 3. Three-dimensional view of one of the enantiomeric molecules of cis-cis-(4a) with atom numbering
ring a are, as expected, axial and equatorial, in ring $\boldsymbol{\text { e the }}$ double-bonded sulphur atom is equatorial and the methyl group on C(4) is axial. This is due to a conformational flip of ring B into its alternative chair form which reverses the axialequatorial character of the $\mathrm{P}=\mathrm{S}$ and $\mathrm{C}-\mathrm{CH}_{3}$ bonds. In this way the two rings A and $в$ became non-equivalent and this conformer of trans-trans-(4a) is called trans-trans'-(4a) (see later). For this reason, although the diastereoisomer trans-trans-(4a) is chiral, Figure 2 shows only one of the enantiomeric molecules present in the crystal state.

Figure 3 clearly illustrates that the molecule of cis-cis-(4) investigated is also in the (4a) series. However, in this case both dioxaphosphorinan rings A and B adopt the expected chair-like conformation with the thiophosphoryl sulphur and methyl groups in equatorial positions.

Further details of the geometries of the two diastereoisomers of (4) are given in Table 5.

The substituent orientation in the six-membered ring may be described by the angle between the substituent vector and the best least-squares plane through the atoms $\mathrm{O}(11) \mathrm{O}(12) \mathrm{C}$ -

Figure 4. Packing of the molecules of trans-trans'-(4a) in the unit cell

Figure 5. Packing of the molecules of cis-cis-(4a) in the unit cell
(11) $\mathrm{C}(13)$ or $\mathrm{O}(21) \mathrm{O}(22) \mathrm{C}(21) \mathrm{C}(23)$. The corresponding values $\left({ }^{\circ}\right)$ are as follows:

	trans-trans'-(4a)		cis-cis-(4a)		
	Ring A	Ring B	Ring A		Ring B
$\mathrm{P}=\mathbf{S}$	-87.0	18.8	-9.8	13.1	
$\mathrm{C}-\mathrm{CH}_{3}$	28.6	-63.7	-28.2	26.1	

Table 1. Fractional positional parameters ($\times 10^{4}$) for non-hydrogen atoms

The conformation of the 1,3,2-dioxaphosphorinan ring is described by torsion angles shown in Figure 6 together with the asymmetry parameters. ${ }^{14}$ On the other hand, Table 6 gives the distances of the atoms from the planes through four atoms of the ring. Based on these data all four rings may be classified as deformed chairs.

The general shape of a ring may also be characterised by two dihedral angles. They are defined by the angle between the best least-squares planes passing through the four central atoms of the ring and the O,P,O plane (α) or the plane of the remaining carbon atoms (β). The calculated values $\left({ }^{\circ}\right)$ of the angles α and β are as follows:

	trans-trans'-(4a)		cis-cis-(4a)	
	Ring A	Ring B	Ring A	Ring B
α	43.5	26.1	36.8	33.6
β	53.3	52.6	52.9	53.1

These data show clearly that the conformations of the 1,3,2dioxaphosphorinan rings are distorted compared with cyclohexane, three of them being substantially flattened at the phosphorus end. Similar ring deformations were observed for the anhydrides (1a and b). ${ }^{34}$ The flattening that occurs in ring в in trans-trans'-(4a) is a consequence of the repulsive interactions between the bridging oxygen atom (O) and the methyl group, $\mathrm{C}(24) \mathrm{H}_{3}$, in the axial position. The distance

Table 2. Hydrogen atom positional parameters ($\times 10^{4}$) with isotropic temperature factors ($10^{3} \AA$)

	x	y	z	U
(a) trans-trans ${ }^{\prime}$-(4a)				
H(111)	552	230	2569	50
H(121)	-851	1014	2461	56
H(122)	-1389	528	2392	56
H(131)	-1355	757	-350	52
H(132)	-443	354	-543	52
H(141)	1256	601	5178	75
H(142)	299	958	5087	75
H(143)	-25	439	5303	75
H(211)	4825	2068	-410	63
H(212)	4230	1612	-1378	63
H(221)	3587	2523	-2090	58
H(222)	4241	2232	-3 330	58
H(241)	1918	1394	-4488	71
H(242)	2975	1690	-5626	71
H(243)	3354	1417	-3695	71
H(231)	2120	2232	-4034	55
(b) cis-cis-(4a)				
H(111)	4 592(31)	248(31)	6 738(56)	70(10)
H(112)	4 676(35)	-807(34)	8 386(62)	90(11)
H(121)	2 680(34)	- $1077(32)$	$6329(59)$	76(11)
H(122)	3 689(42)	- $1288(39)$	4 791(73)	112(15)
H(131)	2 699(30)	645(29)	3 420(50)	62(9)
H(141)	805(44)	434(42)	$1744(76)$	111(16)
H(142)	795(43)	-645(39)	3 255(74)	110(15)
H(143)	$1849(40)$	-979(39)	1444 (70)	104(13)
H(211)	1430 (27)	4 942(25)	5 580(46)	47(7)
H(221)	3 260(31)	6230 (28)	4 854(50)	65(9)
H(222)	1926 (33)	$6215(30)$	3 133(57)	79(10)
H(231)	3 796(32)	4700 (31)	2 257(58)	73(10)
H(232)	2 675(34)	$4067(31)$	2 571(57)	79(11)
H(241)	795(44)	7 010(40)	6 347(73)	103(14)
H(242)	$1024(40)$	6 196(38)	$8462(77)$	105(14)
H(243)	$1978(47)$	$6969(43)$	$7881(78)$	116(17)

$\mathrm{O} \cdots \mathrm{C}(24)(3.272 \AA$) shows them to be in close contact. Interestingly, the other contacts between $\mathrm{S}(2)$ and $\mathrm{O}(11)$ and $O(12)$ are 3.52 and $3.63 \AA$, respectively. Similar interactions do not occur in the cis-cis-(4a) molecule because of a different dihedral angle, $\mathrm{S}(1)-\mathrm{P}(1) \cdots \mathrm{P}(2)-\mathrm{S}(2)$ (see Figure 7). The angle between the planes $\mathrm{S}(1) \mathrm{P}(1) \mathrm{O}$ and $\mathrm{S}(2) \mathrm{P}(2) \mathrm{O}$ in transtrans ${ }^{\prime}$-(4a) is 165.3°, and in cis-cis-(4a) 80.6 ${ }^{\circ}$.

A comparison of selected bond lengths and angles is given in Table 7. It should be noted that the $\mathrm{P}(1) \mathrm{OP}(2)$ angle in trans-trans' ${ }^{\prime}(4 \mathrm{a})\left(138.2^{\circ}\right)$ is distinctly larger than that in cis-cis-(4a) (133.3 ${ }^{\circ}$) and those found in $\mathrm{K}_{4} \mathrm{P}_{3} \mathrm{O}_{9} \mathrm{NH}_{2}\left(132^{\circ}\right)^{15}$ and the cyclic pyrophosphate (1a) ${ }^{3}\left(131.8^{\circ}\right)$ because of the nonbonded interactions between $S(2)$ and the underside of ring a.

The axial thiophosphoryl bond ($1.907 \AA$) is slightly longer than the equatorial one ($1.899 \AA$) in trans-trans' ${ }^{\prime}$ (4a). In cis-cis-(4a) the lengths of the thiophosphoryl bonds are 1.891 and $1.893 \AA$. These distances lie within the range ($1.85-1.96$ \AA) typical of substituted thiophosphates. ${ }^{16}$

The average $\mathrm{P}-\mathrm{O}$ bond for both structures (1.567 and 1.562 \AA, respectively) is similar to the previously observed value, $1.57 \AA \AA^{17-19}$ The $\mathrm{P}-\mathrm{O}$ ring bonds for the ring with an axial sulphur are significantly longer than those in rings with an equatorial sulphur.

Corformation of Diastereoisomeric Dithiopyrophosphates (4) in Solution.-We discuss briefly the conformation of diastereoisomeric dithiopyrophosphates (4) in solution based on the n.m.r. and i.r. data presented above as well as emphasizing some differences between the crystalline and solution state

Table 3. Bond lengths (\AA) in dithiopyrophosphates (4)

(a) trans-trans'-(4a)			
$\mathrm{S}(2)-\mathrm{P}(2)$	1.899(2)	$\mathrm{C}(11)-\mathrm{C}(14)$	1.503(6)
$\mathrm{O}^{-} \mathrm{P}(2)$	1.605(3)	$\mathrm{C}(21)-\mathrm{H}(211)$	1.08(5)
$\mathrm{O}(21)-\mathrm{P}(2)$	1.564(3)	$\mathrm{C}(21)-\mathrm{H}(212)$	1.09(4)
$\mathrm{O}(22)-\mathrm{P}(2)$	1.559(3)	$\mathrm{C}(22)-\mathrm{H}(221)$	1.10(4)
$\mathrm{O}^{-} \mathrm{P}(1)$	1.588(3)	$\mathrm{C}(22)-\mathrm{H}(222)$	1.00 (5)
$\mathrm{S}(1)-\mathrm{P}(1)$	1.907(1)	$\mathrm{C}(23)-\mathrm{H}(231)$	1.04(4)
$\mathrm{O}(11)-\mathrm{P}(1)$	1.570(2)	$\mathrm{C}(24)-\mathrm{H}(241)$	1.13(5)
$\mathrm{O}(12)-\mathrm{P}(1)$	1.572(3)	$\mathrm{C}(24)-\mathrm{H}(242)$	1.08(6)
$\mathrm{C}(21)-\mathrm{O}(21)$	1.470(6)	$\mathrm{C}(24)-\mathrm{H}(243)$	1.08(5)
$\mathrm{C}(23)-\mathrm{O}(22)$	1.508(5)	$\mathrm{C}(13)-\mathrm{H}(131)$	0.93(4)
$\mathrm{C}(22)-\mathrm{C}(21)$	1.518(7)	$\mathrm{C}(13)-\mathrm{H}(132)$	1.05(4)
$\mathrm{C}(22)-\mathrm{C}(23)$	1.499(6)	$\mathrm{C}(12)-\mathrm{H}(121)$	1.12(4)
$\mathrm{C}(24)-\mathrm{C}(23)$	1.495(7)	$\mathrm{C}(12)-\mathrm{H}(122)$	1.00(4)
$\mathrm{C}(11)-\mathrm{O}(11)$	1.478(4)	$\mathbf{C}(11)-\mathbf{H}(111)$	1.09(4)
$\mathrm{C}(13)-\mathrm{O}(12)$	1.480(5)	$\mathrm{C}(14)^{-} \mathrm{H}(141)$	0.91(5)
$\mathrm{C}(13)-\mathrm{C}(12)$	$1.517(6)$	$\mathrm{C}(14)-\mathrm{H}(142)$	1.09(6)
$\mathrm{C}(11)-\mathrm{C}(12)$	1.504(5)	$\mathrm{C}(14)-\mathrm{H}(143)$	1.00(6)
(b) cis-cis-(4a)			
$\mathrm{S}(1)-\mathrm{P}(1)$	1.891(1)	$\mathrm{O}(11)-\mathrm{P}(1)$	1.569(2)
$\mathrm{O}(12)-\mathrm{P}(1)$	1.563(2)	$\mathrm{O}^{-} \mathrm{P}(1)$	1.608(2)
$\mathrm{C}(11)-\mathrm{O}(11)$	$1.463(4)$	$\mathrm{C}(13)-\mathrm{O}(12)$	$1.481(3)$
$\mathrm{C}(12)-\mathrm{C}(11)$	$1.505(5)$	$\mathrm{C}(13)-\mathrm{C}(12)$	1.510(4)
$\mathrm{C}(14)-\mathrm{C}(13)$	$1.500(4)$	$\mathrm{P}(2)-\mathrm{O}$	1.617(2)
S(2)-P(2)	1.893(1)	$\mathrm{O}(21)-\mathrm{P}(2)$	1.557(2)
$\mathrm{O}(22)-\mathrm{P}(2)$	1.559(2)	$\mathrm{C}(21)-\mathrm{O}(21)$	1.480 (3)
$\mathrm{C}(23)-\mathrm{O}(22)$	1.474(3)	C(22)-C(21)	1.498(4)
C(24)-C(21)	1.508(5)	$\mathrm{C}(23)-\mathrm{C}(22)$	1.504(4)
$\mathrm{H}(111)-\mathrm{C}(11)$	0.99(3)	$\mathrm{H}(112)-\mathrm{C}(11)$	1.05(4)
$\mathrm{H}(121)-\mathrm{C}(12)$	0.91 (4)	$\mathrm{H}(122)-\mathrm{C}(12)$	0.97(5)
$\mathrm{H}(131)-\mathrm{C}(13)$	0.90(3)	$\mathrm{H}(141)-\mathrm{C}(14)$	0.92(5)
H(142)-C(14)	1.00(5)	$\mathrm{H}(143)-\mathrm{C}(14)$	1.11(5)
$\mathrm{H}(211)-\mathrm{C}(21)$	0.89(3)	$\mathrm{H}(221)-\mathrm{C}(22)$	1.05(3)
H(222)-C(22)	1.00(3)	$\mathrm{H}(231)-\mathrm{C}(23)$	0.94(4)
H(232)-C(23)	0.97(4)	$\mathrm{H}(241)-\mathrm{C}(24)$	0.87(5)
H(242)-C(24)	1.00(5)	H(243)-C(24)	0.95(5)

conformations especially for trans-trans-(4a). For the sake of brevity only the diastereoisomers (4a) are taken into consideration as the conclusions drawn are also valid for series (4b).

For the unsymmetrical diastereoisomer cis-trans-(4a) the four different conformations in Scheme 3 may be considered to exist in solution, but the observations of a rather high coupling constant value, ${ }^{4} J_{\mathrm{P}-\mathrm{CH}_{3}} 2.75 \mathrm{~Hz}$, which is characteristic of a 1,3,2-dioxaphosphorinan ring with both methyl and thiophosphoryl sulphur group in equatorial positions, ${ }^{2,10}$ limits the discussion to two of them, cis-trans- and cis-trans'(4a).*

The presence of the conformer cis-trans'-(4a) with an axial methyl group in ring e could explain why the second coupling constant value for the unsymmetrical isomer, ${ }^{4} J_{\mathrm{P}-\mathrm{CH}_{3}} 0.88 \mathrm{~Hz}$, is very low. However, this may be due to flattening of ring \mathbf{B} which diminishes the distinction between axial and equatorial sites on phosphorus. Moreover, in the cis-trans'-(4a) conformation the non-equivalence of the phosphorus atoms is slight and the difference between their chemical shifts is likely to be small. Therefore, we believe that the predominant, if not exclusive, conformation of this isomer in solution is cis-trans(4a). In accord with this, four bands observed in the i.r. spectrum (measured in CHCl_{3} solution) in the region typical for the thiophosphoryl group can be most reasonably assigned to axial and equatorial $\mathrm{P}=\mathrm{S}$ bonds.

* A prime attached to the relevant half of the name shows that the 1,3,2-dioxaphosphorinan ring had flipped conformationally into its alternative chair form.

For the second diastereoisomer (4a) having the trans-transconfiguration at both phosphorus atoms three conformations should be taken into account, trans-trans-, trans-trans'-, and trans ${ }^{\prime}$-trans'-(4a) (Scheme 4). As mentioned earlier isomer (4a) exists exclusively in the solid state in the trans-trans'conformation. This conformer is probably more stable in comparison with the other conformers because it alone contains one 1,3,2-dioxaphosphorinan ring (в) in which the thiophosphoryl sulphur and bridging oxygen atoms occupy positions agreeing with their conformational preferences. This effect and perhaps the better stabilization of this conformer induced by crystal packing are stronger than the equatorial preference of the methyl group on $C(4)$. However, if the trans-trans'-conformer of (4a) were present exclusively in solution we should observe an AB signal in the ${ }^{31} \mathrm{P}$ n.m.r. spectrum as a result of the non-equivalent phosphorus atoms $P(1)$ and $P(2)$, but this is not observed. The ${ }^{31} P$ n.m.r. spectrum of the symmetrical trans-trans-isomer shows one singlet which remains unchanged to -80°. Moreover, it should also be noted that only one signal for the methyl protons on $\mathrm{C}(4)$ which ${ }^{4} J_{\mathrm{P} \text { - } \mathrm{CH}_{3}} 0.80 \mathrm{~Hz}$ appears in the ${ }^{1} \mathrm{H}$ n.m.r. spectrum, and it does not change when the temperature is decreased to -80°. On the other hand, the i.r. spectrum (measured in CHCl_{3} solution) of this isomer shows four bands for the $\mathrm{P}=\mathrm{S}$ grouping as in the case of the unsymmetrical isomer cis-trans(4a). All these observations lead to the conclusion that the symmetrical trans-trans-isomer exists in solution as a mixture of the above shown conformers and the energy for conformer interconversion is probably quite low.

The diastereoisomer (4a) with the cis-cis-configuration can adopt in solution three different conformations, cis-cis-, cis$c^{\prime} s^{\prime}$-, and $c i s^{\prime}$-cis'-(4a) as shown in Scheme 5. Among these cis-cis-(4a) is expected to be the most stable conformation since both its methyl groups are equatorial, both its $\mathrm{P}=\mathrm{S}$ groups are in energetically favourable equatorial positions; and the exocyclic oxygen atom occupies the preferred axial position. All the spectral data (one singlet in the ${ }^{31} \mathbf{P}\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectrum, one signal for methyl protons in ${ }^{1} \mathrm{H}$ n.m.r. spectrum, only two $\mathrm{P}=\mathrm{S}$ bands at higher frequencies in the i.r. spectrum) strongly support the view that this isomer exists in solution in the cis-cis-conformation which is also the exclusive conformation observed in the solid state.

[^1]Table 4. Bond angles (${ }^{\circ}$) in dithiopyrophosphates (4)
(a) trans-trans'-(4a)

$\mathrm{O}-\mathrm{P}(2)-\mathrm{S}(2)$	$116.5(1)$
$\mathrm{O}(21)-\mathrm{P}(2)-\mathrm{S}(2)$	$114.8(1)$
$\mathrm{O}(21)-\mathrm{P}(2)-\mathrm{O}$	$100.2(2)$
$\mathrm{O}(22)-\mathrm{P}(2)-\mathrm{S}(2)$	$113.9(1)$
$\mathrm{O}(22)-\mathrm{P}(2)-\mathrm{O}$	$103.0(1)$
$\mathrm{O}(22)-\mathrm{P}(2)-\mathrm{O}(21)$	$106.9(2)$
$\mathrm{P}(1)-\mathrm{O}-\mathrm{P}(2)$	$138.2(2)$
$\mathrm{C}(21)-\mathrm{O}(21)-\mathrm{P}(2)$	$120.0(3)$
$\mathrm{C}(23)-\mathrm{O}(22)-\mathrm{P}(2)$	$123.5(2)$
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{O}(21)$	$109.1(4)$
$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{C}(21)$	$112.6(4)$
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{O}(22)$	$109.8(3)$
$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{O}(22)$	$108.6(4)$
$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{C}(22)$	$117.2(4)$
$\mathrm{S}(1)-\mathrm{P}(1)-\mathrm{O}$	$112.3(1)$
$\mathrm{O}(11)-\mathrm{P}(1)-\mathrm{S}(1)$	$116.1(1)$
$\mathrm{O}(12)-\mathrm{P}(1)-\mathrm{O}$	$102.8(1)$
$\mathrm{O}(12)-\mathrm{P}(1)-\mathrm{S}(1)$	$116.3(1)$
$\mathrm{O}(12)-\mathrm{P}(1)-\mathrm{O}(11)$	$105.0(1)$
$\mathrm{O}(11)-\mathrm{P}(1)-\mathrm{O}$	$102.7(1)$
$\mathrm{C}(11)-\mathrm{O}(11)-\mathrm{P}(1)$	$117.9(2)$
$\mathrm{C}(13)-\mathrm{O}(12)-\mathrm{P}(1)$	$114.5(2)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{O}(12)$	$109.6(3)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$111.4(3)$
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{O}(11)$	$109.6(3)$
$\mathrm{C}(14)-\mathrm{C}(11)-\mathrm{O}(11)$	$105.4(3)$
$\mathrm{C}(14)-\mathrm{C}(11)-\mathrm{C}(12)$	$114.5(4)$
$\mathrm{H}(142-\mathrm{C}(14)-\mathrm{C}(11)$	$111(4)$
$\mathrm{H}(141)-\mathrm{C}(14)-\mathrm{C}(11)$	$113(4)$
$\mathrm{H}(141)-\mathrm{C}(14)-\mathrm{H}(142)$	$105(5)$
$\mathrm{H}(143)-\mathrm{C}(14)-\mathrm{C}(11)$	$107(4)$
$\mathrm{H}(143)-\mathrm{C}(14)-\mathrm{H}(142)$	$110(5)$
$\mathrm{H}(143)-\mathrm{C}(14)-\mathrm{H}(141)$	$112(5)$

(b) cis-cis-(4a)

$\mathrm{O}(11)-\mathrm{P}(1)-\mathrm{S}(1)$	$114.1(1)$
$\mathrm{O}(12)-\mathrm{P}(1)-\mathrm{O}(11)$	$106.5(1)$
$\mathrm{O}-\mathrm{P}(1)-\mathrm{O}(11)$	$104.1(1)$
$\mathrm{C}(11)-\mathrm{O}(11)-\mathrm{P}(1)$	$117.6(2)$
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{O}(11)$	$109.9(3)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{O}(12)$	$109.1(3)$
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(12)$	$114.5(3)$
$\mathrm{S}(2)-\mathrm{P}(2)-\mathrm{O}$	$115.2(1)$
$\mathrm{O}(21)-\mathrm{P}(2)-\mathrm{S}(2)$	$114.3(1)$
$\mathrm{O}(22)-\mathrm{P}(2)-\mathrm{S}(2)$	$113.8(1)$
$\mathrm{C}(21)-\mathrm{O}(21)-\mathrm{P}(2)$	$119.7(2)$
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{O}(21)$	$108.5(2)$
$\mathrm{C}(24)-\mathrm{C}(21)-\mathrm{C}(22)$	$115.1(3)$
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{O}(22)$	$110.8(2)$
$\mathrm{H}(111)-\mathrm{C}(11)-\mathrm{C}(12)$	$113(2)$
$\mathrm{H}(112)-\mathrm{C}(11)-\mathrm{C}(12)$	$113(2)$
$\mathrm{H}(121)-\mathrm{C}(12)-\mathrm{C}(11)$	$108(2)$
$\mathrm{H}(122)-\mathrm{C}(12)-\mathrm{C}(11)$	$109(3)$
$\mathrm{H}(122)-\mathrm{C}(12)-\mathrm{H}(121)$	$113(3)$
$\mathrm{H}(131)-\mathrm{C}(13)-\mathrm{C}(112)$	$111(2)$
$\mathrm{H}(142-\mathrm{C}(14)-\mathrm{C}(13)$	$102(3)$
$\mathrm{H}(142)-\mathrm{C}(14)-\mathrm{H}(141)$	$110(4)$
$\mathrm{H}(143)-\mathrm{C}(14)-\mathrm{H}(141)$	$117(4)$
$\mathrm{H}(211)-\mathrm{C}(21)-\mathrm{O}(21)$	$106(2)$
$\mathrm{H}(211)-\mathrm{C}(21)-\mathrm{C}(24)$	$111(2)$
$\mathrm{H}(221)-\mathrm{C}(22)-\mathrm{C}(23)$	$108(2)$
$\mathrm{H}(222-\mathrm{C}(22-\mathrm{C}(23)$	$109(2)$
$\mathrm{H}(231)-\mathrm{C}(23)-\mathrm{O}(22)$	$99(2)$
$\mathrm{H}(232)-\mathrm{C}(23)-\mathrm{O}(22)$	$107(2)$
$\mathrm{H}(232)-\mathrm{C}(23)-\mathrm{C}(22)$	$111(2)$
$\mathrm{H}(241)-\mathrm{C}(24)-\mathrm{C}(21)$	$107(3)$
$\mathrm{H}(242-\mathrm{C}(24)-\mathrm{H}(241)$	$117(4)$
$\mathrm{H}(243)-\mathrm{C}(24)-\mathrm{H}(241)$	$105(4)$

$\mathrm{O}(12)-\mathrm{P}(1)-\mathrm{S}(1)$	$114.4(1)$
$\mathrm{O}-\mathrm{P}(1)-\mathrm{S}(1)$	$115.9(1)$
$\mathrm{O}-\mathrm{P}(1)-\mathrm{O}(12)$	$100.4(1)$
$\mathrm{C}(13)-\mathrm{O}(12)-\mathrm{P}(1)$	$119.7(2)$
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	$112.6(3)$
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{O}(12)$	$106.3(3)$
$\mathrm{P}(2)-\mathrm{O}-\mathrm{P}(1)$	$133.3(1)$
$\mathrm{O}(21)-\mathrm{P}(2)-\mathrm{O}$	$104.5(1)$
$\mathrm{O}(22)-\mathrm{P}(2)-\mathrm{O}$	$100.6(1)$
$\mathrm{O}(22)-\mathrm{P}(2)-\mathrm{O}(21)$	$107.1(1)$
$\mathrm{C}(23)-\mathrm{O}(22)-\mathrm{P}(2)$	$119.2(2)$
$\mathrm{C}(24)-\mathrm{C}(21)-\mathrm{O}(21)$	$105.0(3)$
$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{C}(21)$	$112.5(2)$
$\mathrm{H}(111)-\mathrm{C}(11)-\mathrm{O}(11)$	$109(2)$
$\mathrm{H}(112)-\mathrm{C}(11)-\mathrm{O}(11)$	$111(2)$
$\mathrm{H}(112)-\mathrm{C}(11)-\mathrm{H}(111)$	$102(3)$
$\mathrm{H}(121)-\mathrm{C}(12)-\mathrm{C}(13)$	$109(2)$
$\mathrm{H}(122)-\mathrm{C}(13)-\mathrm{C}(13)$	$106(3)$
$\mathrm{H}(131)-\mathrm{C}(13)-\mathrm{C}(12)$	$104(2)$
$\mathrm{H}(131)-\mathrm{C}(14)-\mathrm{C}(14)$	$111(2)$
$\mathrm{H}(142)-\mathrm{C}(14)-\mathrm{C}(13)$	$108(3)$
$\mathrm{H}(143)-\mathrm{C}(14)-\mathrm{C}(13)$	$109(2)$
$\mathrm{H}(143)-\mathrm{C}(21)-\mathrm{H}(142)$	$110(3)$
$\mathrm{H}(211)-\mathrm{C}(22)-\mathrm{C}(22)$	$111(2)$
$\mathrm{H}(221)-\mathrm{C}(21)-\mathrm{C}(21)$	$110(2)$
$\mathrm{H}(222)-\mathrm{C}(22)-\mathrm{C}(21)$	$110(2)$
$\mathrm{H}(222)-\mathrm{C}(22)-\mathrm{H}(221)$	$107(2)$
$\mathrm{H}(231)-\mathrm{C}(23)-\mathrm{C}(22)$	$115(2)$
$\mathrm{H}(232)-\mathrm{C}(23)-\mathrm{C}(22)$	$111(2)$
$\mathrm{H}(232)-\mathrm{C}(23)-\mathrm{H}(231)$	$114(3)$
$\mathrm{H}(242)-\mathrm{C}(24)-\mathrm{C}(21)$	$107(3)$
$\mathrm{H}(243)-\mathrm{C}(24)-\mathrm{C}(21)$	$110(3)$
$\mathrm{H}(243)-\mathrm{C}(24)-\mathrm{H}(242)$	$1114)$

Table 5. The geometry of 1,3,2-dioxaphosphorinan rings in trans-trans'-(4a) and cis-cis-(4a)

Plane 1

$\mathrm{O}(11) \mathrm{O}(12) \mathrm{C}(11) \mathrm{C}(13)$	$\mathrm{P}(1) \mathrm{O}(11) \mathrm{O}(12)$
	C(11)C(12)C(13)
	$\mathrm{O}(22) \mathrm{O}(21) \mathrm{C}(21) \mathrm{C}(23)$
	$\mathbf{P}(1) \mathbf{S}(1) \mathbf{O}$
	$\mathbf{P}(2) \mathbf{S}(2) \mathrm{O}$
	$\mathbf{P}(1) \mathrm{OP}(2)$
$\mathrm{O}(21) \mathrm{O}(22) \mathrm{C}(21) \mathrm{C}(23)$	$\mathrm{P}(2) \mathrm{O}(21) \mathrm{O}(22)$
	$\mathrm{C}(21) \mathrm{C}(22) \mathrm{C}(23)$
	$\mathbf{P}(1) \mathrm{S}(1) \mathrm{O}$
	$\mathbf{P}(2) \mathbf{S}(2) 0$
	$\mathrm{P}(1) \mathrm{OP}(2)$
$\mathrm{P}(1) \mathrm{OP}(2)$	$\mathbf{P}(1) \mathbf{S}(1) \mathrm{O}$
	$\mathbf{P}(2) \mathbf{S}(2) \mathrm{O}$
$\mathrm{P}(1) \mathrm{S}(1) \mathrm{O}$	$\mathbf{P}(2) \mathbf{S}(2) \mathrm{O}$

Angles (${ }^{\circ}$) between planes 1 and 2 trans-trans'-(4a) cis-cis-(4a)

43.5	36.8
53.3	52.9
31.5	26.9
89.2	88.0
88.5	67.4
83.7	78.5
26.1	33.6
52.6	53.1
86.4	66.7
86.5	88.0
89.3	80.7
7.9	53.1
19.6	59.2
14.7	80.6

Figure 6. Torsion angles (${ }^{\circ}$) and asymmetry parameters of 1,3,2-dioxaphosphorinan rings in trans-trans' ${ }^{\prime}$ and cis-cis-(4a)

$$
\begin{gathered}
\text { trans - trans }-(4 \mathrm{a}) \\
\mathrm{S}(1)-\mathrm{P}(1) \ldots \mathrm{P}(2)-\mathrm{S}(2) 172 \cdot 4^{\circ}
\end{gathered}
$$

$S(1)-P(1) \ldots P(2)-S(2) 99.7^{\circ}$

Figure 7. Newman projections around $P(1) \cdots P(2)$, showing the relevant torsion angles (${ }^{\circ}$)
equatorial position, i.e. it is a mixture of trans-cis-(5a and b) isomers.

Distillation of this pyrophosphite resulted in the formation of a new diastereoisomeric pyrophosphite (5) which showed in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectrum only one signal at $\delta_{\mathrm{P}} 115.3$ p.p.m. Addition of elemental sulphur to the distilled (5) gave mainly the dithiopyrophosphate cis-cis-(4a), $\delta_{\mathbf{P}} 46.8$ p.p.m. In the ${ }^{31} \mathrm{P}$ n.m.r. spectrum of this product a signal at $\delta_{\mathrm{p}} 46.5$ p.p.m. was also observed but its intensity was very low. Hence, it possesses the symmetrical trans-trans-structure, in which both electron pairs lie in equatorial positions. Moreover, it is reasonable to assume that the dithiopyrophosphate (4) obtained by Arbuzov was mainly a mixture of the cis-cis-(4a and b) isomers.

The experiments described above indicate that trans-trans(5) is thermodynamically more stable than the trans-cis-(5)

Table 6. Distances of the atoms from the planes (\AA)

	trans-trans'-(4a)		
Atoms	1	2	3
O(11)	* -0.022	0.585	* -0.035
O(12)	* 0.022	* -0.015	0.645
$\mathrm{P}(1)$	-0.660	* 0.014	* 0.033
C(11)	* 0.022	* -0.014	-0.640
C(12)	0.683	* 0.015	* 0.036
C(13)	* -0.022	-0.690	* -0.034
C(14)	0.741	0.077	-0.498
S(1)	-2.564	-1.595	-1.565
O(21)	*-0.064	0.500	* 0.045
O(22)	0.386	* 0.105	* 0.044
P (2)	* 0.057	* 0.098	-0.429
C(21)	-0.658	* - 0.100	* -0.045
C(22)	* 0.066	* 0.107	0.667
C(23)	* -0.060	-0.558	* 0.044
C(24)	-1.399	-2.048	-1.296
S(2)	1.256	1.279	0.183

cis-cis-(4a)		
4	5	6
* -0.015	-0.558	* 0.042
* 0.014	* 0.055	-0.521
0.562	* -0.052	* -0.039
* 0.015	* 0.054	0.648
-0.668	*-0.057	* -0.044
* -0.014	0.622	* 0.041
-0.724	0.446	0.726
0.238	-1.080	1.069
* -0.055	0.521	* 0.013
0.490	* -0.069	* 0.013
* 0.051	* 0.064	-0.512
-0.644	* - 0.067	* -0.013
* 0.056	* 0.072	0.667
* -0.052	-0.605	* 0.013
-0.494	0.669	0.649
1.040	1.153	-0.082

* Atoms included in the calculations of the planes.

Table 7. Comparison of selected bond lengths and angles in 1,3,2-dioxaphosphorinan rings of trans-trans'-(4a) and cis-cis-(4a)

Bond lengths	(\AA)	B (eq)	A (eq)	в (eq)
$\mathrm{P}=\mathbf{S}$	1.907(1)	1.889(2)	1.891(1)	1.893(1)
P-O (bridge)	1.588(3)	$1.605(3)$	1.608(2)	1.617(2)
P-O (ring)	$\{1.570(2)$	$\{1.564(3)$	$\{1.563(2)$	$\{1.557(2)$
P-O (ring)	1.572(3)	1.559(3)	$\{1.569(2)$	1.559(2)
Bond angles (${ }^{\circ}$)	(\AA)	в (eq)	A (eq)	в (eq)
$\mathrm{O}_{\mathrm{r}}-\mathrm{P}-\mathrm{O}_{\mathrm{r}}$	105.0(1)	106.9(2)	106.5(1)	107.1(1)
$\mathrm{O}_{\mathbf{r}}-\mathrm{P}-\mathrm{O}_{\text {b }}$	$\{102.8(1)$	$\{100.2(2)$	$\{104.1(1)$	$\{104.5(1)$
$\mathrm{O}_{\mathbf{r}}-\mathrm{P}-\mathrm{O}_{\mathrm{b}}$	$\{102.7(1)$	\{103.0(1)	$\{100.4(1)$	\{100.6(1)
$\mathrm{S}=\mathrm{P}-\mathrm{O}_{\mathrm{b}}$	112.3(1)	116.5(1)	115.9(1)	115.2(1)
$\mathbf{S}=\mathbf{P}-\mathrm{O}_{\mathbf{r}}$	$\left\{\begin{array}{l}16.1(1) \\ 1163(1)\end{array}\right.$	$\{114.8(1)$	$\{114.4$ (1)	$\{114.3(1)$
$\mathrm{S}-\mathrm{P}-\mathrm{O}_{\mathbf{r}}$	\{116.3(1)	$\{113.9(1)$	$\{114.1(1)$	\{113.8(1)
$\mathrm{C}^{-} \mathrm{Or}_{\mathbf{r}}-\mathrm{CP}$	$\{117.9(2)$	$\left\{\begin{array}{l}120.0(3) \\ 123.5(2)\end{array}\right.$	$\{117.6(2)$	$\{119.7(2)$
$\mathrm{C}-\mathrm{Or}^{-\mathrm{CP}}$	\{114.5(2)	\{123.5(2)	\{119.7(2)	\{119.2(2)

$\mathbf{O}_{\mathbf{r}}=$ Endocyclic oxygen atom. $\mathrm{O}_{\mathrm{b}}=$ exocyclic oxygen atom.
isomer. This, in turn, should be more stable than the pyrophosphite cis-cis-(5) which would have both lone pairs in axial positions. This isomer is probably formed as an initial product of the condensation depicted in Scheme 6 if one assumes that nucleophilic substitution at phosphorus in trans-(7) occurs with inversion of configuration. It would, however, undergo very fast isomerisation at phosphorus under the given reaction conditions to give trans-cis-(5). Therefore, one can conclude that the stability order of diastereoisomeric pyrophosphites (5) is in good agreement with the conformational preferences of the lone pair electrons in 1,3,2-dioxaphosphorinan systems.

Experimental

B.p.s and m.p.s are uncorrected. Solvents and reactants were reagent grade. ${ }^{1} \mathrm{H}$ N.m.r. spectra were obtained with a Bruker HX-90 spectrometer with tetramethylsilane as internal standard. ${ }^{31} \mathrm{P}$ N.m.r. spectra were recorded with a JEOL INM-C-60 HL spectrometer with 85% phosphoric acid as external standard. I.r. spectra were measured with UR-10 spectrometer using KBr discs or in CHCl_{3} solution.

Synthesis of cis-trans-Bis-(4-methyl-2-thioxo-1,3,2-dioxa-phosphorinan-2-yl) Oxide (4a and b).-To a solution of the
racemic tetramethylammonium salt of cis-thioacid (2) ${ }^{5}$ (1.21 $\mathrm{g}, 0.005 \mathrm{~mol}$) in acetronitrile (25 ml) a solution of the racemic trans-bromide-(3b) ${ }^{6}(1.16 \mathrm{~g}, 0.005 \mathrm{~mol})$ in acetonitrile (5 ml) was added at room temperature. The mixture was stirred at 45° for 5 h . Tetramethylammonium bromide was filtered off. The filtrate was evaporated to give crude condensation product ($1.3 \mathrm{~g}, 97 \%$), m.p. 62- 66°. Its crystallization from n -propanol-cyclohexane gave pure cis-trans-(4) which consisted of two isomers (4 a and b) (1 g) in equal amounts, m.p. 80-84 ${ }^{\circ}$, $\delta_{\mathrm{H}}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) 0.87\left(\mathrm{dd}, \mathrm{CH}_{3}\right), 0.90\left(\mathrm{dd}, \mathrm{CH}_{3},{ }^{3} J_{\mathrm{CH}_{3}-\mathrm{H}} 6.25,{ }^{4} J_{\mathrm{CH}_{3}-\mathrm{P}(1)}\right.$ $2.75 \mathrm{~Hz}), 1.04\left(\mathrm{dd}, \mathrm{CH}_{3}\right), 1.05\left(\mathrm{dd}, \mathrm{CH}_{3},{ }^{3} J_{\mathrm{CH}_{3}-\mathrm{H}} 6.25,{ }^{4} J_{\mathrm{CH}_{3}-\mathrm{P}(2)}\right.$ 0.88 Hz), δ_{p} (benzene) 45.7 [P(1)] and $50.0[\mathrm{P}(2)]$ p.p.m. (AB, $\left.{ }^{2} J_{\mathrm{P}(1)-\mathrm{P}(2)} 34.5 \mathrm{~Hz}\right)$, $v_{\text {max. }}(\mathrm{KBr}) 681,695,745,750(\mathrm{P}=\mathrm{S})$, and $950 \mathrm{~cm}^{-1}\left(\mathrm{P}^{-} \mathrm{O}^{-} \mathrm{P}\right.$) (Found: C, 30.25; H, 5.1; P, 19.15. Calc. for $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{5} \mathrm{P}_{2} \mathrm{~S}_{2}: \mathrm{C}, 30.2 ; \mathrm{H}, 5.05 ; \mathrm{P}, 19.45 \%$).

Synthesis of trans-trans-Bis-(4-methyl-2-thioxo-1,3,2-dioxa-phosphorinan-2-yl) Oxide (4a and b).-Tetramethylammonium salt of the racemic trans-thioacid (2) ${ }^{s}(1.21 \mathrm{~g}, 0.005 \mathrm{~mol})$ was dissolved in acetonitrile (40 ml) and treated with a solution of the racemic trans-bromide (3b) ${ }^{6}(1.16 \mathrm{~g}, 0.005 \mathrm{~mol})$ in acetonitrile (5 ml). After 5 h stirring at 45° the mixture was cooled to room temperature and tetramethylammonium bromide was filtered off. To the filtrate cyclohexane (5 ml) was

cis-trans-(4a)

cis'-trans-(4a)

cis-trans'-(4a)

Scheme 3. Conformations of cis-trans-(4a)

trans-trans'- (4a)
trans'-trans'- (4a)
Scheme 4. Conformations of trans-trans-(4a)

Scheme 5. Conformations of cis-cis-(4a)

cis $-6+$ trans $-(7)_{i} \rightarrow$ cis-cis $-(5 b)$

trans-(7)

trans-cis-(5a+b)
trans - cis $-(5 a)+\mathrm{S}_{8} \longrightarrow$ cis-trans $-(4 \mathrm{a})$
trans - cis-(5b) $+\mathrm{S}_{8} \longrightarrow$ cis-trans - (4b)

trans-trans-(5a+b)
trans-trans $-(5 a)+S_{8} \longrightarrow$ cis - cis - (4a)
trans -trans - (5b) $+\mathrm{S}_{8} \longrightarrow$ cis -cis - (4b)

Scheme 6. Diastereoisomers of (5)
added. The resulting solution was left for crystallization for a few days at 0°. The isolated condensation product, trans-trans-(4) $(1.1 \mathrm{~g} .82 \%)$, m.p. $45-60^{\circ}$, was found to consist of two isomers (4 a and b) as shown by the ${ }^{31} \mathrm{P}$ n.m.r. spectrum (two singlets at $\delta_{\mathbf{P}} 48.1$ and 48.3 p.p.m.). After three crystallizations of these products from benzene-cyclohexane one pure isomer, trans-trans-(4a) was obtained, m.p. 91-92.5 ${ }^{\circ}$, $\delta_{\mathrm{H}}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) 1.04\left(\mathrm{dd}, \mathrm{CH}_{3},{ }^{3} J_{\mathrm{CH}-\mathrm{H}} 6.25,{ }^{4} J_{\mathrm{CH}_{3}-\mathrm{P}} 0.80 \mathrm{~Hz}\right), \delta_{\mathrm{P}}$ $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$ 48.3(s), $v_{\text {max. }}(\mathrm{KBr}) 635,650,735,740,(\mathrm{P}=\mathrm{S})$, and 950 $\mathrm{cm}^{-1}\left(\mathrm{P}-\mathrm{O}^{-} \mathrm{P}\right)$ (Found: C, 30.3; H, $5.05 ; \mathrm{P}, 19.55 \%$).

Synthesis of cis-cis-Bis-(4-methyl-2-thioxo-1,3,2-dioxaphos-phorinan-2-yl Oxide (4a and b).-A solution of the racemic tetramethylammonium salt of cis-thioacid (2) ${ }^{5}$ (1.04 g , 0.0043 mol) in acetonitrile (30 ml) was treated with the racemic cis-chloride (3 a) ($0.8 \mathrm{~g}, 0.0043 \mathrm{~mol}, 80 \%$ d.p.) at room temperature. The mixture was stirred for 5 h at 45°. Then, tetramethylammonium chloride was filtered off and acetonitrile evaporated. The residue was dissolved in benzene (200 ml). The benzene solution was washed with water, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated to give a mixture of cis-cis-(4a) and cis-cis-(4b) ($1 \mathrm{~g}, 73 \%$), in a ratio of $81: 10\left({ }^{31} \mathrm{P}\right.$ n.m.r. assay, $\delta_{\mathrm{p}} 46.8$ and 46.5 p.p.m., respectively), m.p. $120-130^{\circ}$. The condensation product was contaminated with some amount of the cis-trans$(4 a+b)$ isomer. Crystallization of this product from benzenecyclohexane gave the major diastereoisomer cis-cis-(4a), m.p. $159-162^{\circ}, \delta_{\mathbf{H}}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right) 0.87$ (dd, $\mathrm{CH}_{3},{ }^{3} J_{\mathrm{CH}_{3}-\mathrm{H}} 6.25,{ }^{4} J_{\mathrm{CH}_{3} \mathrm{P}} 1.13$ $\mathrm{Hz}), \delta_{\mathrm{P}}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right) 46.8(\mathrm{~s}) ; \mathrm{v}_{\text {max. }}(\mathrm{KBr}) 705,755(\mathrm{P}=\mathrm{S})$, and 950 $\mathrm{cm}^{-1}\left(\mathrm{P}-\mathrm{O}^{-\mathrm{P}}\right.$) (Found: C, 30.2; H, 5.05; P, 19.2\%).

Synthesis of and Sulphur Addition to Bis-(4-methyl-1,3,2-dioxaphosphorinan-2-yl) Oxide (5).-To a solution of cis-4-
methyl-2-oxo-1,3,2-dioxaphosphorinan (6) ${ }^{5}(4.08 \mathrm{~g}, 0.03 \mathrm{~mol})$ in benzene (80 ml) triethylamine ($3.02 \mathrm{~g}, 0.03 \mathrm{~mol}$) and then trans-2-chloro-4-methyl-1,3,2-dioxaphosphorinan (7) ${ }^{22}$ (4.64 $\mathrm{g}, 0.03 \mathrm{~mol})$ were added at $0-5^{\circ}$. After stirring the mixture for 0.5 h at 5° triethylamine hydrochloride was filtered off and benzene evaporated. The crude reaction product gave two ${ }^{31} \mathrm{P}$ resonances in a ratio of $11: 89$. The first appeared as a singlet at $\delta_{\mathbf{P}} 115.3$ p.p.m. The second signal was a cal AB system with $\delta 116.0[\mathrm{P}(1)]$ and $118[\mathrm{P}(2)]$ p.p.m. $\left({ }^{2} J_{\mathrm{P}} .{ }^{2}(2) 90 \mathrm{~Hz}\right)$ and can be ascribed to the unsymmetrical pyrophosphite trans-cis-(5). After addition of sulphur to the crude product the ${ }^{31} \mathrm{P}$ n.m.r. showed an AB system typical for the dithiopyrophosphate cis-trans- $(4 a+b)$. Distillation of the crude reaction product gave pyrophosphite (5) ($3.4 \mathrm{~g}, 42 \%$), b.p. $102-104^{\circ}$ at $0.6 \mathrm{mmHg}, n_{\mathrm{D}}{ }^{20} 1.4560, \delta_{\mathrm{P}} 115.3$ p.p.m. This product was contaminated with other phosphorus-containing compounds. Addition of elemental sulphur to the distilled product at 50° gave mainly dithiopyrophosphonate with $\delta_{\mathbf{P}} 46.8$ p.p.m. together with a small amount of its isomer with $\delta_{p} 46.5$ p.p.m.

X-Ray Structure Determination of trans-trans'-(4a) and cis-cis-(4a).-Single crystals of the title compounds were grown from benzene-cyclohexane. The crystal data for both dithiopyrophosphates are as follows:

trans-trans ${ }^{\prime}$-(4a)	cis-cis-(4a)
$\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{5} \mathrm{P}_{2} \mathrm{~S}_{2}$	$\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{5} \mathrm{P}_{2} \mathrm{~S}_{2}$
Mol. wt. 318.3	Mol. wt. 318.3
Orthorhombic	Triclinic
Space group Pbca (No. 61)	Space group $P \bar{I}$ (No. 2)
$Z=8$	$Z=2$
$F(000)=1328$	$F(000)=332$
$a=11.572(1) \AA$	$a=10.889(15) \AA$
$b=31.741(1)$	$b=11.150(15)$
$c=7.625(1)$	$c=6.286(6)$
$D_{\mathrm{m}}=1.505 \mathrm{~g} \mathrm{~cm}^{-3}$	$\alpha=92.96(7)^{\circ}$
$D_{\mathrm{c}}=1.518 \mathrm{~g} \mathrm{~cm}$	
$U=2800.71 \AA^{-3}$	$\beta=100.82(6)$
$C u-K_{\alpha}$ radiation	$\gamma=75.92(5)$
	$D_{\mathrm{m}}=1460 \mathrm{~g} \mathrm{~cm}^{-3}$
	$D_{\mathrm{c}}=1.462 \mathrm{~g} \mathrm{~cm}^{-3}$
	$U=727.03 \AA^{3}$
	Mo- K_{α} radiation

The space groups and cell dimensions were derived from Weissenberg photographs, and the cell dimensions refined from diffractometer data. The intensity data for trans-trans'(4a) were collected on a STOE automated four-circle diffractometer using Ni-filtered $\mathrm{Cu}-K_{\alpha}$ radiation. The intensities of 1970 reflections (out of a total of 2173 in the range recorded) with $F>4 \sigma(F)$ were classified as observed and used for structure refinement. Intensity data for cis-cis-(4a) were collected on a Syntex $\mathrm{P}_{2}{ }_{1}$ diffractometer (Mo- K_{α} radiation). Intensity measurements were carried out in the $\theta-2 \theta$ mode ($3.5<2 \theta<$ 60°) with graphite-monochromated Mo- K_{α} radiation. After application of the acceptance criterion, $F>4 \sigma(F), 3083$ unique reflections were retained for use in structural analysis. Both structures investigated were solved and refined with SHELX 76. The structure of trans-trans'-(4a) was solved by $^{\prime}$ an automatic centrosymmetric direct method while the structure of cis-cis-(4a) was solved by weighted multi-solution tangent refinement. Both structures were refined by blocked full-matrix least squares with anisotropic temperature factors for all non-hydrogen atoms. All hydrogen atoms were located from difference syntheses and their positional parameters were freely refined with individual isotropic temperature factors. The terminal value ($\left.R_{w}=\Sigma w^{\frac{1}{2}} \Delta / \Sigma w^{\frac{1}{2}}\left|F_{0}\right|\right)=0.080$ and 0.048 and $R=0.058$ and 0.046 for trans-trans $^{\prime}$-(4a) and cis-cis-
(4a), respectively, were obtained. The weights were given by $w=k /\left[\sigma^{2}\left(F_{\mathrm{o}}\right)+g F_{\mathrm{o}}{ }^{2}\right]$ where k and g were refined.

Anisotropic temperature factors and structure factors are in Supplementary Publication No. SUP 2348 (19 pp.).

Acknowledgements

We thank Professor Dr. W. Saenger, Max-Planck Institut für exptl. Medizin, Göttingen, F.R.G., and Doz. Dr. W. S. Sheldrick, Gesellschaft für Biotechnologische Forschung, Braunschweig-Stöckheim, F.R.G., for the possibility of carrying out the diffractometric measurements as well as for helpful discussion of the results. One of us (M. M.) thanks the Institute of Organic Chemistry and Biochemistry, University of Hamburg, for a one-semester visiting professorship which facilitated preparation of this paper.

References

1 Part 12, M. W. Wieczorek, Phosphorus and Sulfur, 1980, 9, 137.

2 B. R. Maryanoff, R. D. Hutchins, and C. A. Maryanoff, 'Topics in Stereochemistry,' eds. N. L. Allinger and E. L. Eliel, Wiley, New York, 1980, vol. 11, p. 189,
3 M. Bukowska-Strzyżewska and W. Dobrowolska, Acta Crystallogr., 1978, B34, 1357.
4 M. Bukowska-Strzyżewska, J. Michalski, B. Młotkowska, and J. Skoweranda, Acta Crystallogr., 1976, B32, 2605.

5 M. Mikolajczyk and J. Łuczak, Tetrahedron, 1972, 28, 5411.

6 M. Mikołajczyk, J. Krzywañski, and B. Ziemnicka, Phosphorus, 1974, 5, 67.
7 M. Mikołajczyk, J. Krzywanski, and B. Ziemnicka, Tetrahedron Lett., 1975, 1607.
8 B. A. Arbuzov, K. V. Nikonorov, G. M. Winokurova, O. N. Fedorova, and Z. G. Shishova, Izv. Akad. Nauk SSSR, Ser. Chim., 1953, 3 (Chem. Abstr., 1958, 52, 241.
9 J. Michalski, M. Mikołajczyk, and A. Ratajczak, Bull. Acad. Polón. Sci., 1968, 13, 277; J. Michalski, M. Mikołajczyk, B. Mlotkowska, and J. Omelańczuk, Tetrahedron, 1969, 25, 1743.

10 C. L. Bodkin and P. Simpson, J. Chem. Soc. B, 1971, 1136.
11 J. G. Verkade, Phosphorus and Sulfur, 1976, 2, 251.
12 See also M. Mikołajczyk, J. Krzywañski, and B. Ziemnicka, J. Org. Chem., 1977, 42, 190.

13 L. D. Hall and R. B. Malcolm, Chem. Ind. (London), 1968, 92.
14 H. L. Duax and D. A. Norton, 'Atlas of Steroid Structure,' Plenum, New York-Washington-London, 1975, p. 18.
15 W. Hilmer, Acta Crystallogr., 1965, 19, 733.
16 D. E. C. Corbridge, 'The Structural Chemistry of Phosphorus,' Elsevier, Amsterdam, 1974.
17 A. Grand and J. B. Robert, Acta Crystallogr., 1975, B31, 2502.
18 A. Grand, J. Martin, J. B. Robert, and J. Tordjman, Acta Crystallogr., 1975, B31, 2523.
19 M. W. Wieczorek, W. S. Sheldrick, J. Karolak-Wojciechowska, M. Mikołajczyk, and B. Ziemnicka, Acta Crystallogr., 1979, B35, 2339.
21 W. E. McEven, Top. Phosphorus Chem., 1965, 2, 1.
22 H. L. Lucas, F. W. Mitchell, and C. N. Scully, J. Am. Chem. Soc., 1950, 72, 5491.

[^0]: \dagger cis-2-Chloro-4-methyl-2-thioxo-1,3,2-dioxaphosphorinan (3a) having 80% diastereoisomeric purity was obtained from the reaction between cis-thioacid (2) and phosphorus pentachloride. The reaction afforded also dithiopyrophosphate cis-trans- $(4 \mathrm{a}+$ b) (M. Mikolajczyk and B. Ziemnicka, unpublished results).
 \ddagger We thank a referee for this suggestion.

[^1]: ${ }^{31} \mathrm{P}$ N.m.r. Spectral Observations on the Stereochemistry of Bis-(4-methyl-1,3,2-dioxaphosphorinan-2-yl) Oxide (5).-As previously mentioned, Arbuzov ${ }^{8}$ obtained dithiopyrophosphate (4), m.p. $130-135^{\circ}$, via sulphur addition to bis-(4-methyl-1,3,2-dioxaphosphorinan-2-yl) oxide (5). This fact prompted us to study this reaction by means of ${ }^{31} \mathrm{P}$ n.m.r. spectroscopy in the hope of obtaining some information on the structure of (4) as well as on the stereochemistry of pyrophosphite (5). It is interesting to note that pyrophosphite (5) like dithiopyrophosphate (4), should exist in six diastereoisomeric forms differing in configuration at both phosphorus atoms and in the relationship between methyl groups in the dioxaphosphorinan rings.

 With this in mind we treated cis-2-oxo-4-methyl-1,3,2dioxaphosphorinan (6) ${ }^{5}$ with trans-2-chloro-4-methyl-1,3,2dioxaphosphorinan (7) ${ }^{20}$ in the presence of triethylamine in benzene solution at $0-5^{\circ}$. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectrum of the crude condensation product showed an AB signal with $\delta_{\mathrm{P}} 118$ $[\mathrm{P}(1)]$ and $116[\mathrm{P}(2)]$ p.p.m. $\left({ }^{2} J_{\mathrm{P}(1)-\mathrm{P}(2)} 90 \mathrm{~Hz}\right)$. This product on treatment with sulphur gave a mixture of dithiopyrophosphates cis-trans-(4a and b). Since sulphur addition proceeds undoubtedly with retention of configuration at both phosphorus atoms, ${ }^{21}$ the pyrophosphite (5) obtained in this way has two electron pairs, one in an axial and the other in an

